Final Exam - Functional Analysis (WIFA-08)

Monday 8 April 2019, 9.00-12.00h
University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.
2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or " 42 " is not sufficient.
3. If p is the number of marks then the exam grade is $G=1+p / 10$.

Problem $1(16+3+6=25$ points $)$

Let S be any nonempty set and consider the normed linear space

$$
\mathcal{B}(S, \mathbb{K})=\left\{f: S \rightarrow \mathbb{K}: \sup _{x \in S}|f(x)|<\infty\right\}, \quad\|f\|_{\infty}=\sup _{x \in S}|f(x)|
$$

(a) Prove that $\left(\mathcal{B}(S, \mathbb{K}),\|\cdot\|_{\infty}\right)$ is a Banach space.

In the following, assume that $S=\left\{x_{n}: n \in \mathbb{N}\right\}$ is infinite and countable.
(b) Show that $V=\left\{f \in \mathcal{B}(S, \mathbb{K}): \sum_{n=1}^{\infty}\left|f\left(x_{n}\right)\right|<\infty\right\}$ is a linear subspace of $\mathcal{B}(S, \mathbb{K})$.
(c) Define on V the norm $\|f\|_{1}=\sum_{n=1}^{\infty}\left|f\left(x_{n}\right)\right|$. Are the norms $\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$ equivalent on V ?

Problem $2(3+3+8+8+3=25$ points)

Provide the space $\mathcal{C}([0,1], \mathbb{R})$ with the sup-norm:

$$
\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)| .
$$

Consider the linear operator $T: \mathcal{C}([0,1], \mathbb{R}) \rightarrow \mathcal{C}([0,1], \mathbb{R})$ defined by

$$
T f(x)=\int_{0}^{1} K(x, t) f(t) d t \quad \text { where } \quad K(x, t)= \begin{cases}t(1-x) & \text { if } 0 \leq t \leq x \leq 1 \\ x(1-t) & \text { if } 0 \leq x \leq t \leq 1\end{cases}
$$

(a) Show that T is bounded. (Do not attempt to compute $\|T\|!$)
(b) Show that

$$
T f(x)=(1-x) \int_{0}^{x} t f(t) d t+x \int_{x}^{1}(1-t) f(t) d t .
$$

(c) Assume $\lambda \neq 0$. Prove the following implication:

$$
T f=\lambda f \quad \Rightarrow \quad f^{\prime \prime}(x)=-\frac{1}{\lambda} f(x), \quad f(0)=0, \quad f(1)=0 .
$$

(d) Show that $\lambda_{n}=1 / n^{2} \pi^{2}$ with $n \in \mathbb{N}$ is an eigenvalue of T and compute the corresponding eigenspace.
Hint: you may use without proof that the implication in part (c) is in fact an equivalence.
(e) Show that $0 \in \sigma(T)$.

Problem $3(5+(9+3+3)=20$ points $)$
(a) Formulate the Closed Graph Theorem.
(b) Let X be a Hilbert space, and assume that the sequence $\left(h_{n}\right)$ in X satisfies

$$
\sum_{n=1}^{\infty}\left|\left(x, h_{n}\right)\right|^{2}<\infty \quad \text { for all } \quad x \in X
$$

In addition, consider the linear operator

$$
T: X \rightarrow \ell^{2}, \quad T x=\left(\left(x, h_{1}\right),\left(x, h_{2}\right),\left(x, h_{3}\right), \ldots\right)
$$

Prove the following statements:
(i) T is closed;
(ii) T is bounded;
(iii) There exists a constant $C>0$ such that

$$
\sum_{n=1}^{\infty}\left|\left(x, h_{n}\right)\right|^{2} \leq C\|x\|^{2} \quad \text { for all } x \in X
$$

Problem $4(4+8+8=20$ points $)$
(a) Formulate the Hahn-Banach Theorem for normed linear spaces.
(b) Consider the space $\mathcal{C}([0,1], \mathbb{K})$ with the sup-norm. Fix $c \in[0,1]$ and consider the following linear maps:

$$
\begin{array}{ll}
f: \mathcal{C}([0,1], \mathbb{K}) \rightarrow \mathbb{K}, & f(\varphi)=\int_{0}^{1} \varphi(t) d t \\
g: \mathcal{C}([0,1], \mathbb{K}) \rightarrow \mathbb{K}, & g(\varphi)=\varphi(c)
\end{array}
$$

Show that $\|f\|=1$ and $\|g\|=1$.
(c) Consider the linear subspace $V=\operatorname{span}\{1, x\}$ and the linear map

$$
h: V \rightarrow \mathbb{K}, \quad h(a+b x)=a+b / 2 .
$$

Apply the Hahn-Banach Theorem to h : is the object of which the existence is asserted by that theorem unique?

End of test (90 points)

Solution of Problem $1(16+3+6=25$ points $)$
(a) Let $\left(f_{n}\right)$ be a Cauchy sequence in $\mathcal{B}(S, \mathbb{K})$. Then for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
n, m \geq N \quad \Rightarrow \quad\left\|f_{n}-f_{m}\right\|_{\infty} \leq \varepsilon
$$

Let $x \in S$ be arbitrary. Then

$$
\begin{equation*}
n, m \geq N \Rightarrow\left|f_{n}(x)-f_{m}(x)\right| \leq \sup _{x \in S}\left|f_{n}(x)-f_{m}(x)\right|=\left\|f_{n}-f_{m}\right\|_{\infty} \leq \varepsilon, \tag{1}
\end{equation*}
$$

which shows that $f_{n}(x)$ is a Cauchy sequence in \mathbb{K}. Since \mathbb{K} is complete $\lim _{n \rightarrow \infty} f_{n}(x)$ exists. Hence, we can define a function $f: S \rightarrow \mathbb{K}$ pointwise by setting $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$.
(7 points)
By letting $m \rightarrow \infty$ in equation (1) we obtain that

$$
n \geq N \quad \Rightarrow \quad\left|f_{n}(x)-f(x)\right| \leq \varepsilon
$$

Since this inequality holds for all $x \in S$, we obtain

$$
\begin{equation*}
n \geq N \quad \Rightarrow \quad\left\|f_{n}-f\right\|_{\infty} \leq \varepsilon \tag{2}
\end{equation*}
$$

which means that $f_{n} \rightarrow f$ in $\mathcal{B}(S, \mathbb{K})$.
(7 points)
In particular, equation (2) also implies that $f_{N}-f \in \mathcal{B}(S, \mathbb{K})$. Since $\mathcal{B}(S, \mathbb{K})$ is a linear space it follows that $f=f_{N}-\left(f_{N}-f\right) \in \mathcal{B}(S, \mathbb{K})$.

(2 points)

(b) If $f, g \in V$ and $\lambda \in \mathbb{K}$, then

$$
\sum_{n=1}^{\infty}\left|f\left(x_{n}\right)+g\left(x_{n}\right)\right| \leq \sum_{n=1}^{\infty}\left(\left|f\left(x_{n}\right)\right|+\left|g\left(x_{n}\right)\right|\right)=\sum_{n=1}^{\infty}\left|f\left(x_{n}\right)\right|+\sum_{n=1}^{\infty}\left|g\left(x_{n}\right)\right|<\infty
$$

and

$$
\sum_{n=1}^{\infty}\left|\lambda f\left(x_{n}\right)\right|=|\lambda| \sum_{n=1}^{\infty}\left|f\left(x_{n}\right)\right|<\infty
$$

which implies that $f+g \in V$ and $\lambda f \in V$ as well.
(3 points)
(c) Define for $n \in \mathbb{N}$ the following function:

$$
f_{n}: S \rightarrow \mathbb{K}, \quad f_{n}\left(x_{k}\right)= \begin{cases}1 & \text { if } k \leq n \\ 0 & \text { if } k>n\end{cases}
$$

On the one hand, we have that $\left\|f_{n}\right\|_{1}=n$ for all $n \in \mathbb{N}$ (which also shows that $\left.f_{n} \in V\right)$. On the other hand $\left\|f_{n}\right\|_{\infty}=1$ for all $n \in \mathbb{N}$. Therefore, the norms $\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$ are not equivalent on V.
(6 points)

Solution of Problem $2(3+3+8+8+3=25$ points $)$
(a) Observe that $|K(x, t)| \leq 1$ for all $(x, t) \in[0,1] \times[0,1]$. Therefore, it follows for all $x \in[0,1]$ that

$$
|T f(x)|=\left|\int_{0}^{1} K(x, t) f(t) d t\right| \leq \int_{0}^{1}|K(x, t)||f(t)| d t \leq \int_{0}^{1}\|f\|_{\infty} d t=\|f\|_{\infty}
$$

Hence,

$$
\|T f\|_{\infty}=\sup _{x \in[0,1]}|T f(x)| \leq\|f\|_{\infty}
$$

which shows that T is indeed bounded.
(3 points)
(b) We have that

$$
\begin{aligned}
T f(x) & =\int_{0}^{1} K(x, t) f(t) d t \\
& =\int_{0}^{x} K(x, t) f(t) d t+\int_{x}^{1} K(x, t) f(t) d t \\
& =\int_{0}^{x} t(1-x) f(t) d t+\int_{x}^{1} x(1-t) f(t) d t \\
& =(1-x) \int_{0}^{x} t f(t) d t+x \int_{x}^{1}(1-t) f(t) d t .
\end{aligned}
$$

(3 points)

(c) If $T f=\lambda f$, then

$$
\begin{aligned}
\lambda f(x) & =(1-x) \int_{0}^{x} t f(t) d t+x \int_{x}^{1}(1-t) f(t) d t \\
& =(1-x) \int_{0}^{x} t f(t) d t-x \int_{1}^{x}(1-t) f(t) d t
\end{aligned}
$$

Since $\lambda \neq 0$ it immediately follows that $f(0)=f(1)=0$.

(2 points)

Differentiation gives

$$
\begin{aligned}
\lambda f^{\prime}(x) & =-\int_{0}^{x} t f(t) d t+(1-x) x f(x)-\int_{1}^{x}(1-t) f(t) d t-x(1-x) f(x) \\
& =-\int_{0}^{x} t f(t) d t-\int_{1}^{x}(1-t) f(t) d t
\end{aligned}
$$

(4 points)

Differentiating again gives

$$
\lambda f^{\prime \prime}(x)=-x f(x)-(1-x) f(x)=-f(x) .
$$

(2 points)

(d) For $\lambda_{n}=1 / n^{2} \pi^{2}$ we obtain the boundary value problem:

$$
f^{\prime \prime}(x)=-n^{2} \pi^{2} f(x), \quad f(0)=0, \quad f(1)=0 .
$$

The general solution of the differential equation is given by

$$
f(x)=A \cos (n \pi x)+B \sin (n \pi x) .
$$

(4 points)

The boundary condition $f(0)=0$ implies that $A=0$.
(1 point)
The boundary condition $f(1)=0$ is satisfied for any constant B.
(1 point)
Hence, the eigenspace of T corresponding to the eigenvalue $\lambda_{n}=1 / n^{2} \pi^{2}$ is given by ker $\left(T-\lambda_{n}\right)=\operatorname{span}\{\sin (n \pi x)\}$.
(2 points)
(e) Since $\lambda_{n} \in \sigma(T)$ for all $n \in \mathbb{N}$ and $\lambda_{n} \rightarrow 0$ it follows that $0 \in \operatorname{clos} \sigma(T)=\sigma(T)$. (3 points)

Solution of Problem $3(5+(9+3+3)=20$ points $)$
(a) Let X and Y be Banach spaces, let $V \subset X$ be a closed linear subspace, and let $T: V \rightarrow Y$ be a linear map. If the graph of T is closed, then $T \in B(V, Y)$.

(5 points)

(b) (i) Assume that $x_{n} \rightarrow x$ in X and $T x_{n} \rightarrow y$ in ℓ^{2}. Then $\left(x_{n}, T x_{n}\right) \rightarrow(x, y)$ in the product space $X \times \ell^{2}$. We need to show that $(x, y) \in G(T)$, or, equivalently, $y=T x$.

Write $y=\left(y_{1}, y_{2}, y_{3}, \ldots\right)$. Note that the subscripts in x and y have different meanings. One the one hand, we have for each fixed $k \in \mathbb{N}$ that

$$
\left|\left(x_{n}, h_{k}\right)-y_{k}\right| \leq \sqrt{\sum_{k=1}^{\infty}\left|\left(x_{n}, h_{k}\right)-y_{k}\right|^{2}}=\left\|T x_{n}-y\right\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

(3 points)
On the other hand we have

$$
\left|\left(x_{n}, h_{k}\right)-\left(x, h_{k}\right)\right|=\left|\left(x_{n}-x, h_{k}\right)\right| \leq\left\|x_{n}-x\right\|\left\|h_{k}\right\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

(3 points)
By uniqueness of limits it follows that $y_{k}=\left(x, h_{k}\right)$ for all $k \in \mathbb{N}$, which implies that $y=T x$. We conclude that T is a closed operator.
(3 points)
(ii) Applying the Closed Graph Theorem with the Hilbert spaces X and $Y=\ell^{2}$ and the closed linear subspace $V=X$ gives that T is a bounded operator. (3 points)
(iii) Since T is bounded we have $\|T x\|^{2} \leq\|T\|\|x\|$ for all $x \in X$, or, equivalently,

$$
\sum_{n=1}^{\infty}\left|\left(x, h_{n}\right)\right|^{2} \leq\|T\|^{2}\|x\|^{2}
$$

which means that we can take $C=\|T\|^{2}$.
(3 points)

Solution of Problem $4(4+8+8=20$ points $)$
(a) Let X be a normed linear space and let $V \subset X$ be a linear subspace. If $f \in V^{\prime}$, then there exists $F \in X^{\prime}$ such that $F(v)=f(v)$ for all $v \in V$ and $\|F\|=\|f\|$. (4 points)
(b) For $\varphi \in \mathcal{C}([0,1], \mathbb{K})$ we have that

$$
|f(\varphi)|=\left|\int_{0}^{1} \varphi(t) d t\right| \leq \int_{0}^{1}|\varphi(t)| d t \leq \int_{0}^{1}\|\varphi\|_{\infty} d t=\|\varphi\|_{\infty}
$$

(3 points)

With the function $\varphi(t)=1$ we have $\|\varphi\|_{\infty}=1$ and $|f(\varphi)|=1$. Hence,

$$
\|f\|=\sup _{\varphi \neq 0} \frac{|f(\varphi)|}{\|\varphi\|_{\infty}}=1 .
$$

(1 point)

For $\varphi \in \mathcal{C}([0,1], \mathbb{K})$ we have that

$$
|g(\varphi)|=|\varphi(c)| \leq \sup _{x \in[0,1]}|\varphi(x)|=\|\varphi\|_{\infty} .
$$

(3 points)

With the function $\varphi(t)=1$ we have $\|\varphi\|_{\infty}=1$ and $|g(\varphi)|=1$. Hence,

$$
\|g\|=\sup _{\varphi \neq 0} \frac{|g(\varphi)|}{\|\varphi\|_{\infty}}=1 .
$$

(1 point)

(c) First observe that with $c=\frac{1}{2}$ it follows that $f(\varphi)=g(\varphi)=h(\varphi)$ for all $\varphi \in V$. (1 point)

In particular, it then follows that

$$
\|h\|=\sup _{\varphi \in V \backslash\{0\}} \frac{|h(\varphi)|}{\|\varphi\|_{\infty}}=\sup _{\varphi \in V \backslash\{0\}} \frac{|f(\varphi)|}{\|\varphi\|_{\infty}} \leq \sup _{\varphi \in \mathbb{C}([0,1], \mathbb{K}) \backslash\{0\}} \frac{|f(\varphi)|}{\|\varphi\|_{\infty}}=\|f\|=1 .
$$

But note that with $\varphi(t)=1$ we have $\|\varphi\|_{\infty}=1$ and $|h(\varphi)|=1$, which implies that $\|h\|=1$.

(3 points)

We conclude that both f and g with $c=\frac{1}{2}$ are norm preserving extensions of h. But note that $f \neq g$, since for $\varphi(t)=t^{2}$ we have $f(\varphi)=\frac{1}{3}$ whereas $g(\varphi)=\frac{1}{4}$. Therefore, the norm preserving extension of h obtained by the Hahn-Banach Theorem is not unique.

(4 points)

